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The Hunt and Lu [Metall. Mater. Trans. A 27A (1996) 611] model for the selection of primary
spacing, λ, during cellular and dendritic growth predicts a range of spacings falling
between minimum and maximum values of λmin and λmax respectively. Within the model
λmax/λmin will be at least 2 and may, under certain circumstances, be significantly greater.
In this paper we use a free boundary model of solidification within an array to demonstrate
that interaction between the tips of the cells or dendrites leads to a transverse adjustment
mechanism that will tend to equalise the spacing as growth proceeds. This transverse
adjustment mechanism is shown to be rapid for the spacings characteristic of cellular
growth but much more gradual for the spacings characteristic of dendritic growth. These
findings are consistent with observations of the primary spacing of dendrites grown in
alloys of the transparent casting analogue, succinonitrile. C© 2001 Kluwer Academic
Publishers

1. Introduction
The selection of primary spacing within a cellular
or dendritic array during directional solidification has
been an enduring problem within the metallurgical lit-
erature and is of considerable commercial importance.
Early work directed at this problem attempted to find
unique relationships between the solidification condi-
tions and the primary spacing,λ, by making certain
simplifying assumptions about the array growth prob-
lem. By assuming a smooth, steady-state, interface for
dendrites in an hexagonal array, in which the tempera-
ture and composition of the liquid normal to the prin-
cipal growth direction was constant, Hunt [1] was able
to solve forλ and the interface shape away from the
tip region. Kurz & Fisher [2] assumed that a fully de-
veloped dendrite, including side branches, could be ap-
proximated as an ellipsoid of revolution, whereupon an
analysis related to the marginal stability theory for tip
radius selection yields expressions forλ in the limits
of high or low growth velocity,V . The results thus ob-
tained were qualitatively similar to those of Hunt. The
Hunt model was developed further by Trivedi [3] al-
though the agreement between theory and experiment
[4] was still incomplete.

An important advance towards the solution of this
problem was made by Warren and Langer [5, 6]. They
proposed that rather than a unique value ofλ there may
be an allowable range of primary spacings for any given
set of solidification conditions. Following an analysis
in which they considered not only the initial growth
of instabilities from a planar interface, but also subse-
quent coarsening, they proposed that the selection of
the actual value ofλ observed depended not only upon
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the current conditions of the system but also its solid-
ification history. Moreover, the results obtained were
in good agreement with observations [7, 8] based on
the transparent analogue system succinonitrile-acetone.
However, the Warren & Langer model is unable to ac-
count for the ability of a dendritic array to decrease
its primary spacing by tip-splitting or higher-order side
branching in response to a change in the solidification
conditions. This is a phenomenon readily demonstrated
in analogue casting systems.

The currently accepted model of primary spacing se-
lection during directional cellular/dendritic growth is
due to Hunt & Lu [9]. The Hunt & Lu model, like that
of Warren & Langer, proposes that there is an allowable
range of values whichλmay take. Ifλ locally falls be-
low its minimum value,λmin, one of the cells or primary
dendrites is removed from the array by overgrowth.
During this process solute transport from neighbouring
cells or dendrites reduces the growth velocity of one
the members of the array so that it progressively falls
behind the solidification front and is eventually elimi-
nated from the array. Conversely, ifλ locally exceeds its
maximum value,λmax, a new cell or primary dendrite
is nucleated. This occurs by tip splitting in the case of
cells or the accelerated growth of a neighbouring ter-
tiary arm for dendrites.

The general validity of the Hunt & Lu model has
been demonstrated by a number of studies using ana-
logue casting systems. In dendritic systems, Losertet al.
[10] found that in directionally solidified succinonitrile-
C152, reduction of the solidification velocity leads
to a period doubling instability. Within their array
of uniformly spaced dendrites, alternate dendrites
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progressively lost their side branches before being elim-
inated from the array by overgrowth. The growth of new
primary dendrites from tertiary arms has been demon-
strated [11] in a succinonitrile-ethanol alloy subjected
to an increasing solidification velocity. In cellular sys-
tems changes in primary spacing by both overgrowth
and tip splitting have been observed in succinonitrile-
acetone by Han & Trivedi [12] and in succinonitrile-
C152 by Losertet al.[13]. Measured primary spacings
derived from these experiments are generally in good
accord with the model of Hunt & Lu.

However, the variation in the primary spacing pre-
dicted by the Hunt & Lu model is quite large. Clearly
the ratioλmax/λmin must be at least 2. If this were not
the case the elimination of a cell or dendrite from the
array could drive the local spacing aboveλmax lead-
ing to the eliminated feature being immediately re-
placed andvice versa. The results of Losertet al. [10]
would tend to suggest that in many situations the actual
value ofλmax/λmin is very close to 2. This though is
inconsistent with the rather uniform primary spacing
frequently observed in analogue casting experiments.
Recently Dinget al. [14] have identified two distinct
mechanisms which contribute to the primary spacing
in succinonitrile-ethanol and succinonitrile-acetone al-
loys. One is competitive growth between neighbouring
dendrites of the type described by Hunt & Lu. The
other is a relatively slow, transverse adjustment driv-
ing the spacing towards greater uniformity. The for-
mer mechanism determines the mean primary spacing,
λ̄, while the secondary transverse adjustment mecha-
nism leavesλ̄ unaltered but reduce the standard de-
viation in λ. Moreover, this transverse adjustment ap-
pears to be velocity dependent. Measurements by Hunt
et al. [15] on the succinonitrile-acetone systems have
shown that as the growth velocity increases the ar-
ray becomes more irregular, that is there appears to
be less transverse adjustment. Highly irregular array
spacing as a result of rapid solidification has also been
observed by Panet al. [16] is laser remelted Cu-Mn
alloy.

As a cell or dendrite grows, heat and solute are reject
from the tip into the undercooled melt ahead. In the case
of an isolated, parabolic, dendrite the isotherms (or iso-
contrate lines) will form a family of concentric paraboli
around the freezing front. For a regular array of cells or
dendrites with uniform spacing,λ, the isotherms will
no longer be concentric paraboli but will be symmetric
about the tip. However, if we now consider an array
with non-uniform spacing the isotherms will no longer
be symmetric about the tips. Consider a dendrite with its
two nearest neighbours at spacings ofλ1 andλ2, such
that λ1<λ2. Due to the closer proximity of the den-
drite with spacingλ1 the isotherms will be more tightly
packed towards the dendrite atλ1 than they are for the
dendrite atλ2. Consequently, as the dendrite grows,
with the tip following the isotherms, the dendrite will
bend towards its neighbour atλ2, tending to equalise
the array spacing. We would stress that while the over-
growth mechanism of Hunt & Lu implies that there is
a transverse movement of the cell or dendrite tips, this
motion is assumed rather than calculated and the rate at
which it occurs is not determined. It is this transverse

adjustment mechanism with which we are concerned
in this paper.

2. A free boundary model of
growth within an array

In order to quantify this effect a free boundary model
of growth within an array [17] has been used. This is
a thermal solidification model developed originally to
study ripening within a dendritic array. Holding the
boundary ahead of the array at a fixed temperature such
that solidification is always into a slightly undercooled
melt ensures directional dendritic growth. The compu-
tational procedure is also valid for pure solutal growth
and the results may also have interesting consequences
for directional solidification in alloys.

Growth of the dendrite into its parent melt is con-
trolled by the diffusion equation

∂T

∂t
= α∇2T (1)

whereα is the thermal diffusivity. At the solid/liquid
interface growth will occur at velocityv along the local
outward pointing normal,̂n, subject to the balance of
heat fluxes

Hρv = κsGs− κ1G1 (2)

whereρ is the density, taken here as being the same
in the solid and liquid states,H is the latent heat of
fusion,κs andκ1 are the thermal conductivities in the
solid and liquid respectively, andGs and G1 are the
thermal gradients at the interface alongn̂ in the solid
and the liquid.

The interface temperature is fixed by its geometry.
For a solid growing with an anisotropic, four-fold sym-
metric interfacial energyγ , the local interface liquidus
temperature,Ti , is given by

Ti = Tm− KγoTm

Hρ
{1− a cos(4φ)} (3)

whereγo is the nominal interfacial energy between the
solid and liquid phases,a the surface energy anisotropy,
K the surface curvature,φ the angle between̂n and the
principal growth direction andTm is the equilibrium
liquidus temperature.

Solutions to the diffusion problem are sought on a
regular, 2-dimensional M×N grid using a locally one
dimensional (LOD) finite difference scheme [18] to
yield the temperature at the advanced time step.

In order to simulate solidification and melting the
model independently tracks the solid fraction,p, at
each grid point.p takes values 0≤ p≤ 1, wherep= 1
denotes the material being fully solid andp= 0 fully
liquid. If at any node 0< p< 1 the volume cell which
has that node as its centroid will contain some part of
the freezing front and the temperature at that node is
fixed at the local liquidus temperature. At the end of
each time stepp is updated at each node for which
0< p< 1 by considering the heat flux into or out of the
volume element during the time step.

For volume elements containing the solidification
front, p will take values 0< p< 1. However, unlike the
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Figure 1 Geometry of the cellular/dendritic array used in the free bound-
ary model.

phase field approach pioneered by Kobayashi [19], in
which the solidification front is assumed diffuse, here
we assume the solidification front is sharp and must
have a definite position. Consequently we interpret a
value of 0< p< 1 as meaning the volume cell which
has the node (m, n) as its centroid contains some part
of the front such that

pm, n =
∫ xm+ δx/2

xm− δx/2 y dx

δxδz
(4)

wherey is the locus of the solidification front andδx &
δzare the grid spacing in thex- & z-directions. Full de-
tails of the computational procedure are given by Mullis
[17, 20].

To determine the effect of non-uniform primary spac-
ing on growth we have considered an array of six den-
drites growing in the+z direction (Fig. 1). The pri-
mary spacing between the two central dendrites isλ1,
the primary spacing between all other dendrites being
λ0. Within the model the highz boundary is held at a
constant undercooling1T with the other three bound-
aries being adiabatic. After an initial period of ther-
mal equilibration, in which the freezing front is fixed
in space, the solid-liquid boundary is allowed to move
freely under the influence of the thermal field towards
the undercooled boundary. During the growth thex & z
co-ordinates of the two central dendrite tips are tracked
as a function of time to establish if any self-adjustment
of the initial spacing occurs.

3. Results
Due to the computationally intensive nature of the free
boundary calculation, the model has only been run for
times such that the deflection of the tip,1x, is small
relative to the initial spacingsλ0 andλ1. Under these
conditions we find that for all the simulations run

1x ∝ 1z2 (5)

A similar result was found by Mullis [20] for the bend-
ing of dendrites growing in a shear flow. For growth at

Figure 2 The tip rotation parameter8, normalised against the tip radius
R, as a function ofλ1/λ0, for λ0= 7.4R.

constant velocity,V , this was shown to be consistent
with rotation of the principal growth direction at a rate
8 per unit length.

As this deflection is due to the interaction of the ther-
mal fields at the cell or dendrite tips, we might expect
that it would be controlled by the extent to which the
fields overlap. Consequently, we have parameterised8

in terms of the variablesλ1/λ0, λ0 andPt, wherePt is
the thermal Peclet number in the liquid

Pt = V R

2α
(6)

andR is the radius of curvature at the tip. That the inter-
action depends upon the magnitude ofλ0 (orλ1) is clear
from the limiting case of very large spacing (λ→∞)
when each dendrite will grow essentially independently
of its neighbours irrespective of the relative spacing. A
dependence uponPt might be expected because the spa-
tial extent of the thermal field decreasing more rapidly
with Pt than the tip radius and consequently asPt in-
creases the thermal field becomes more localised.

Fig. 2 shows the bending parameter,8 as a function
of the ratioλ1/λ0. Here8 is normalised against the tip
radius,8R giving the rotation per distanceR. 8>0
is defined as indicating that the two cells or dendrites
are bending away from each other (λ1 increasing) and
8<0 as indicating that the two cells are bending to-
wards each other. In these simulations we have fixed
λ0= 7.4R and Pt= 1.14× 10−4. It can be seen from
the figure that the curve is relatively flat in the vicin-
ity of λ1/λ0= 1 but that8 increase steeply asλ1/λ0
departs significantly from 1, particularly for the case
in which the two features become close together. By
definition8= 0 for λ1/λ0= 1.

The results of varyingλ0 whilst fixing the ratio
λ1/λ0= 0.7 are shown in Fig. 3, again withPt fixed
at 1.14× 10−4. From the figure it is apparent that the
bending parameter,8, decreases rapidly as the nom-
inal spacing,λ0, increases. The results are consistent
with8 decreasing exponentially withλ0, although this
is difficult to verify at largeλ0 due to the very small
deflection,1x, involved.
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Figure 3 The tip rotation parameter8, normalised against the tip radius
R, as a function ofλ0, for λ1/λ0= 0.7.

Figure 4 The tip rotation parameter8, normalised against the tip radius
R, as a function of the thermal Peclet number in the liquid,Pt. (Spacing
fixed withλ0= 7.4R & λ1/λ0= 0.7).

Finally, we have investigated the dependence of8

uponPt, the results of which are shown in Fig. 4. The
array spacing is fixed withλ0= 7.4R andλ1/λ0= 0.7.
Over most of the range ofPt studied the behaviour is
as expected, with the bending parameter8 decreasing
with increasingPt. However, forPt≤ 2.26× 10−4 the
opposite trend is observed with8 increasing with in-
creasingPt, giving rise to a local maximum in8 in the
vicinity of Pt= 2.26× 10−4. Thus for a given Peclet
number there is an optimum spacing which will max-
imise the rate at which the dendrite tips bend away
from each other. This appears to be related to the point
at which the thermal fields from neighbouring dendrites
interact. In the case of very low Peclet numbers the ther-
mal fields overlap to such an extent that the isotherms
ahead of the solidification front are almost planar and
the tendency towards equalisation of the spacing is
reduced.

In order to illustrate the effect of the calculated
bending rates on the evolution of a cellular or den-
dritic array we consider the following simple example.

Figure 5 Example calculation showing the locus of a dendrite/cell tip
with nearest neighbours atx= λ andx= 3λ.

Consider three cells/dendrites which att = 0 have tip
positions atx= 0, x= λ andx= 3λ, so that within this
2-dimensional array the primary spacings for the fea-
ture atx= λ areλmin= λ andλmax= 2λ. This gives the
ratio λmax/λmin= 2, which according to the results of
Losertet al. [10] may be close to the maximum value
for this parameter. Due to interactions between neigh-
bouring features there will be a tendency for the spacing
to adjust to reduce the value ofλmax/λmin. Using the re-
sults presented in Figs 2 & 3 we maycalculate the rate
at which the growth direction changes as a result of
the interactions between the dendrites and hence calcu-
late the locus that the growing dendrite will follow. The
result of this calculation is shown in Fig. 5, for three
values ofλ, 5R, 6.25R and 7.5R. The calculation is
performed to first order only. We consider only near-
est neighbour interactions, which may not be the case
in the free boundary model, particularly in the cellular
case. Moreover, we do not consider translation of the
two features atx= 0 andx= 3λ, which would only be
the case if these features were externally constrained.
Nonetheless we consider that this is a useful calculation
to illustrate the general nature of the process of spacing
equalisation.

It is apparent from Fig. 5 that forλ≤ 5R, which is
the case for cells, the adjustment of the primary spac-
ing is very rapid, particularly during the early stages of
the process whenλmax/λmin is high. However, it is ap-
parent that asλmin is increased the mechanism rapidly
becomes less efficient, with virtually no reduction in
λmax/λmin for λmin≥ 7.5R. Consequently, for dendritic,
as opposed to cellular, systems the adjustment mech-
anism is very slow. This is a consequence the rapid
decrease in8 with λ0, illustrated in Fig. 3.

4. Summary & conclusions
Using a free boundary model of solidification we have
demonstrated that there is an interaction between the
tips of the cells or dendrites growing in an array. This
interaction is such that as growth proceeds, it will
tend to equalise the primary spacing. This effect has
been quantified using a free boundary model of array
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solidification. This model suggests that transverse ad-
justment would be very rapid for the spacings char-
acteristic of cellular growth but much more gradual
for the larger spacings (relative to tip radius) charac-
teristic of dendritic growth. These findings are con-
sistent with the observations of Dinget al. [14] who
report observing such a gradual transverse adjustment
of the primary spacing of dendrites grown in transpar-
ent succinonitrile-ethanol and succinonitrile-acetone
alloys.

The tendency towards equalisation of the primary
spacing is also dependent upon the Peclet number in the
liquid. It is likely that during rapid solidification (under-
cooling at the tip>10 K) the thermal field is effectively
localised to the dendrite and little transverse adjustment
is effected. This observation appears to be consistent
with observations in both succinonitrile-acetone alloys
and laser melted Cu-Mn alloy.
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